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INCLUSION THEOREMS FOR 
SONNENSCHEIN MATRICES' 

FREDERICK HARTMANN 

1. Introduction. Inclusion theorems for various methods of summa- 
bility have been the subject of recent research [2], [5]. In this article 
necessary and sufficient conditions for the inclusion of Sonnenschein 
matrix methods are investigated with special attention to matrices 
with complex entries. 

Letf be a function that is analytic for zCDf= {z: zl <R}, R>1 
andf(l)=1. Let 

00 

{f(z)}I = : ankZk n = 1, 2, 
k=O 

aoo = 1, aOk =O k = 1, 2,**. 

Then f determines a sequence to sequence transformation, A (f) 
= (ank), whereby if {Sk } is a sequence and 0n = D=o anksk, n =0, 1, 
2, ... with Jn(-*o then { Sk } is said to be A (f)-summable to o-. Such 
matrices are called Sonnenschein matrices [7]. Special well-known 
cases to be discussed here are the Taylor or Circle method, T(r) [8], 
f(z) = (1 -r)z/(1 -rz), I rI <1; the Laurent method, S(q) [8], f(z) 
=(1-q)/(l-qz), |q| <1; the Euler-Knopp method, E(p) [I], f(z) 
= (1 -p) +pz; and a generalization of the three preceding, the 
Karamata method, K (a, ,3) [7], f(z)= {a+(1- a- 3)z}/(1- 3z), 

BI3 <1. In this new notation T(r)=K(O, r), S(q)=K(1-q, q), E(p) 
=K(1 -p, 0). Necessary and sufficient conditions for these methods 
to be regular are O<r<l, [3]; O<q<l, [4]; O<p<1, [1]; and 
a=f=O or 1-| aJ 2> (1- &)(lI-I) >O, [6] respectively. 

The following lemma and notation will be used in the sequel. 

LEMMA 1. Let DA (f) denote the domain of values z for which the 
geometric series is A (f)-summable to (1 _z)-1. Then 

DA(f) = {z: If(z)I< 14, z ( Df. 

PROOF. Let the nth partial sum of the geometric series be denoted 
by Sn=(1-znA+)/(1-z). Then the A(f)-transform, {o4, of {Sn } is 
given by 
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00 00 00 

n= E ankSk = (1 - Z)-1 E ank - (1 - Z)1 , a,kzk+I 
k=O k=O k=O 

= (1 - Z)- z(j - Z)-1 {f(Z) } n. 

Thus on--*(1 -z)-' if and only if [f(z) ]n-+0 if and only if If(z) I <1. 
Let 

M = x= {xn}: xis bounded}, c = {x}: xis convergent}, 

CA(f) = {x: A(f)x= { E ankxk} c} (0, 1)= {z: Iz ?I}. 

2. Products and inverses. 

THEOREM 1. Suppose A (f), A (g) are Sonnenschein matrices and 
g(L(O, 1))CDf then A(f).A(g)=A(fog) and moreover (A(f)A(g))y 
=A (f) (A (g)y) for all yem. 

PROOF. Let ze/ C(O, 1) and A (f) = (ank), A (g) = (bkj). Then 

{g(z)}k = E bkjzj, k = 0, 1, 2, ... 
j=O 

and the convergence is absolute. Since g(z) CDf 
00 

ff(g(z)) = I anfk{g(z)}, n = 0, 1, 2, 
(1) k=O 

00 /0 \ 00 /00 

E bkjz') = I ankbkc) zi. 
k=O j=O j=O k=O 

The rearrangement (1) is permitted since the series involved converge 
absolutely. Likewise f(g(z)) is analytic on Dfo, DL(0, 1) and hence 

00 

{f(g(z))} =I CnkZk, n = 0, 1, 2, * 
k=O 

Thus by (1) and the uniqueness of power series representation 

Cnk = anjbjk, n = 0,1, 2, * . , k = 0, 1, 2, 
ijO 

If yCm, there exists M, such that Iyj <M, for all j and 
00 00 00 00 

ra ank 1: bkjyj) E E ankbkj) yj) 
k=O j=0 j=O k=O 

since 
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k=O j_O k=O j=0 

and the right-hand side converges since 1 EDfo,. 
In the following corollary f is a one-to-one analytic function and 

Drl is the disk about the origin on which f-1 has a power series repre- 
sentation. (These two conditions are summarized in the single hy- 
pothesis A (f) and A (f-1) are Sonnenschein matrices.) 

COROLLARY. Suppose A (f) and A (f-') are Sonnenschein matrices 
with Df- Df (/ (O, 1)) then A (f) * A ( If) = A (ft') *A (f), where I is the 
identity matrix, i.e. A (f-l) = { A (f) } . 

PROOF. A(f) and A(f-l) Sonnenschein imply Df:DA(O,1) and 
D-1DA (0, 1). Furthermore, DfDf-l(A(O, 1)) and Df-'Df(A(0,1)). 
Therefore A (f) -A (ftl) = A (f of-') = A (e) = I = A (e) = A (f- lof) 

=A(f-') A(f), where e is the identity function on the domain of 
f of-' andf-' of respectively. 

3. Inclusion theorems. The following theorem can easily be proved 
using infinite matrix algebra. 

THEOREM 2. Let A, B be one-to-one sequence matrix transformations. 
Let A-i exist and B(A-1y) = (BA-i)y and A (A-1y) = (AA-i)y =y, for 
all y Em. Then CA CCB if and only if BA-' is conservative. Moreover, if 
A is regulaic then Ax and Bx converge to the same limit for XECA if and 
only if BA-1 is regular. 

We are now prepared to prove our main result. 

THEOREM 3. Suppose A (f), A (g) and A (f-1) are Sonnenschein ma- 
trices with A (f) a regular, one-to-one transformation. Then cAuf)CcA(g) 
and A (f)x and A (g)x converge to the same limit if and only if Dg 
Df- l (A (O, 1)) and A (g) A A (f- i) is regular. 

PROOF. Sufficiency. Since A (f) is a regular Sonnenschein matrix and 
A (f-) is Sonnenschein, a result of Bajsanski [2] implies f(A(O, 1)) 
CL(O,1)CDf-i. Hence by the corollary to Theorem 1 A(fli) 
= {A (f) }I- and A (g) -A (f-i) -A (g of-i) = A (g) * {A (f) }-' and 

A(g)(A(fl)y) = (A(g) *A (frl))y, A(f)(A(fti)y) = (A(f) A(f-))y=y, 
for all yEm. Thus Theorem 2 implies the result. 

Necessity. By Theorem 2 it remains only to show that Dg 
Df-t(iG(O, 1)) is necessary. Suppose CA(f)CCA(g) and Dg1pf-i(A(O, 1)) 
= { z: Jf(z) I < 1, z EDf D}. By Lemma 1 this implies DA (g) pDA (f) and 
this contradicts the hypothesis CA(f)CCA(g). 
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Let f(z) =a'+ (1 -a'- ')z} /(1 - 3'z) and 

g(z) = {a + (1-a- )z}/(1-3z) 

with |J < 1 and I' |' < 1. Then A (f) = K((a', 1') and A (g) = K(a, /). 
When no confusion can arise K(a', /3')G\mCK(a, /) will replace the 
more cumbersome CK(,',0')G\mCCK(.,#)- 

THEOREM 4. Suppose I 3 < 1, I,'I < 1 and 

IIa'' --1+ a' + 'I -2Ia'13' lcosGI 
(i) 

?~~~>21/3'! a' +/3'1-1a'13' 

a + ? _1+ a'#3' 

where 0 is the positive angle between a' and M = (a'3'-1 +a' '+1')/213' 
and 

(ii) 1- a' 12 > (1 ')(I/) > 0 or a' ='O 

then K (a', /3') GnmCK((a, /3) and the transformed limits are the same if 
and only if 

(iii) 1,81 1 1- I a' 21 < I 1,3' 2_ a' 
121a 

and 

(l-v') 
a' (1_ 12_Ic lal ) a'(1 - ) 12 

> (1-)(1A(1 ')(-) > O 

or a =a' and1 =13'. 

PROOF. If 1 /1 < 1, 1 3'! < 1, then A(f) =K(a', 13') and A (g) = K(a, 13) 
are Sonnenschein matrices and moreover it follows that the K(a', /3') 
transform is one-to-one on cK(a', ,,)flm. For A (f-1) to be Sonnenschein 
it is necessary that the range of f include the unit disk, i.e. 

f( Z: Iz I < 1/ I ' I ) :)2i(0,1). 

f transforms the disk D(0, 1/1/3'!) conformally onto the half plane, 
H, whose boundary containsf(-1/1') =y and whose interior contains 
f(O) =a'. The line through A and a' is thus perpendicular to the bound- 
ary of H, because the line through -1/3' and 0 is perpendicular to 
the circle C(O, 1/113'|). A simple calculation shows HDA(0, 1) if and 
only if 

I,~1 11 1 1 - lta' I cos Ol 1? - a' 

where ,u = { a'1'- 1 +a' +?' }/21', if and only if (i) holds. 
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f l(z) = (z X- )/{z + (1- a'-')} 

(1a_ , + -1 [~ 7 13'] - [I _ ' 13j]) 

1-I ~~~~z 

thus by the corollary to Theorem 1, 

A (f) -1 = A(-l) = K K) K c(a', -') 

if 113l <1 and (i) holds. 
By Theorem 3, if D)Df-1((O, 1)) then A(g) A(f1) =A(g of-') 

=K(a, 3) * K-1(a', 13') which implies 

K(a, 13)K-l(a', 13') = K( a, - + , 3 - 13 \ 
- 13'?1Oct/' l- C-1 +13a', 

Sledd [6] proved K(a*, 13*) is regular if and only if ao*=13*=O or 
1-j of* l 2 > (1- &*) (1 - j*) > 0. Thus K(a', (3') is regular if and only 
if (ii) holds and K(a, 13) .K-1(a', 1') is regular if and only if (iv) holds. 

Finally, D,Df-1(2(O, 1)) if and only if 

I 1- I a' 12 - (1 - a')(1 - 1')I + I(1 -&(1 1 - <3')I 1 

1 1 '12- 1 _a'_- 13121 13j' 

sinceft1(2G(O, 1)) is a disk with center, 

1-I a' 12- (1 -a')(1- f9') 

C= -'IAwl2 - a 1t-,t2 

and radius 

R= 1-12 ' I a'j12 

and (1) is equivalent to I CJ + I RI <1/131. Thus the transformed 
disk is contained in Dg= {z: IzI <1/1 13 } if and only if (1) holds. 
Thus if (ii) holds (iii) is equivalent to (1). 

The following corollaries to Theorem 4 give necessary and sufficient 
conditions for inclusion of some well-known matrix transforms by 
other matrix methods. In particular they answer some questions 
posed by Schoonmaker [5]. 
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COROLLARY 1. If < p < 1 and O <r < 1, then E(p) C T(r) if and only 
if (1-p)/(2 -p) <r <p/(2 -p). 

PROOF. With the notation of Theorem 4, E(p) =K(1 -p, 0), T(r) 
=K(O, r). Thus conditions (i) and (ii) of that theorem are satisfied, 
because (i) is trivially true and (ii) is equivalent to 0 <p _ 1. Con- 
dition (iii) with hypothesis 2 <p <1 and O <r <1 becomes 
| rlil-li -p1| 2j < I p 2. This holds if and only if 

(1) r < p/(2-p). 

Condition (iv) with 2 < p < 1 and 0 < r < 1 becomes 

|i - (1 - p)(1 - r)J2 - 1(1 - p)(1 - r)12>(1 - r)p > 0 

which is equivalent to 

(2) r > (1-p)/(2- p). 

But inequalities (1) and (2) can hold simultaneously only if 2 <p and 
thus the result follows. 

COROLLARY 2. If O?5 r?U5 1 and I q I < 1 then T(r) nm C S(q) if and 
only if O<q<1-2r. 

PROOF. S(q) =K(1 -q, q) and T(r) =K(O, r). If O<r 1 and Iqj <1, 
condition (i) of Theorem 4 is satisfied, and (ii) is satisfied since (ii) is 
equivalent to regularity of T(r) or 0 _ r <1. Conditions (iii) and (iv) 
will be satisfied if and only if 

(1) lql < I | -rJ2_ Jr 121 

and 

(2) 1-r 12- (1 - q)(1 -r) 12 > q(1- q)(1 - r) > 0. 

It follows from q(1-q)(1-r)>O and IqI <1 that q is real and q>O. 
But then, under the hypothesis of the corollary, (1) becomes q < 1 -2r 
and (2) becomes q> (2r - 1)/r. But this latter inequality is satisfied 
since (2r-1)/r <0 <q. Therefore (1) and (2) are equivalent to 
O<q<1-2r. 

COROLLARY 3. If O<?r S i, then T(r)C)mCE(p) if and only if 
O<p<1. 

PROOF. K(O, r)=T(r) and K(1-p, O)=E(p). If O<r<4 then, a 
fortiori, 0 5r<1 which is equivalent to condition (ii) and implies 
condition (i) of Theorem 4. Conditions (iii) and (iv) of that theorem 
are equivalent to 
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(1) 0 < I I rl2- I 1-rI 

and 

(2) | -r 12 - (1 - p)(1 - r) 12 > p(1-r) > O, 

respectively. (1) is trivially satisfied and (2) implies p is real, p>0. 
The first inequality in (2) thus reduces to p<1 and the result fol- 
lows. 

Corollaries 1, 2, and 3 strengthen and add new results to theorems 
of Schoonmaker [5]. In conclusion it should be noted that results for 
E(p) DS(q) and T(r) DS(q) could not be found using the methods of 
this paper because f-l(z) {z- (1 -q) }I/qz, f(z) = (1 -q)/(I -qz), 

I qI < 1 is not analytic at the origin. This leads the author to suspect 
that S-'(q) does not exist but no results along these lines could be 
found. 
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