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Univalent Polynomials and
Non-Negative Trigonometric Sums

Alan Gluchoff and Frederick Hartmann

1. INTRODUCTION. Let P,(z) =z + a,z* + a;z> + - +a,z" and

n
T,(0) = Y (Accos(kO) + . sin(k9)), (1)
k=0
where ay, Ay, i, € R. How can a, be chosen so that P,(z) is univalent on
{z:|z| <1}? How can Ay, u, be chosen so that 7,(0) >0 for 6 €[0,#] or
6 € [—m, w]? Could one easily decide if a given P,(z) is univalent, or a given
T,(6) is non-negative?
Of all these questions, the second is probably easiest to answer. Various positive
kernels, for example the Fejér kernel and the Poisson kernel,

1 n +1
K,,(O) = 5 + Z ———mcos(ke), (2)
k=1

1—1r2

— 2rcos 0 + r?’

P(r,0) =142 r"cos(nf) = N

n=1

3

both used in Fourier series, come readily to mind. In [14] Fejér showed that a
trigonometric polynomial of the form (1) is non-negative on [0, 27 ] if and only if
T,(0) = |h(e'®)|?, for h(z) = T}_, ¢, 2%, ¢, € C (f w, = 0 for all k, then ¢, € R).
Still this characterization does not make it easy to decide if a given trigonometric
sum is non-negative, and the univalence of a polynomial isn’t assured by any
obvious condition.

In this paper we explore many surprising ways in which these two questions are
related. It turns out that examples of and facts about non-negative trigonometric
sums can be used to produce many interesting examples of univalent polynomials.
Conversely, given univalent polynomials can be made to generate non-negative
trigonometric sums. Much of this material has not been in the forefront of typical
courses in complex and real analysis, and this is a shame, for there is much to gain
by studying some of the simple and elegant arguments in this material. We present
a variety of examples of this interplay, aided where appropriate by computer
algebra computations and graphics for the polynomials. Some of the results cited
are valid for general infinite series, but highlighting the results for polynomials
allows us to generate interesting graphics.

In what follows D = {z:|z| < 1}, and the polynomials P(z) = ©?_,a,z* always
have a, € R with a, = 1.

2. FEJER AND ALEXANDER. In 1910 Leopold Fejér conjectured that the partial
sums of the trigonometric series X,_,sin (n6)/n, which converges to the positive
function (7 — 6)/2 on [0, 7], are themselves all positive throughout [0, 77]. This
conjecture was proved by Jackson [24] and Gronwall [21] shortly thereafter, and by
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many mathematicians in many ways since; see [2] for much information on this
series and its consequences. In 1915 Alexander [1] published a paper on univalent
polynomials in which he proved, among other things, that the partial sums of the
series Y. _,z"/n, which represents on D the univalent function log(1/(1 — z)),
are themselves univalent. There is a connection between these results: if we
assume the univalence of XY_,z"/n, then it would seem reasonable, given the
symmetry of these partial sums about the real axis, that J{XY_,z"/n} > 0 for
z=re', 0 <0< m 0<r<1;taking z = e’ thus gives TV_, 51n(n0)/n > 0 for
0<6 s 7. Thus, a fact about the univalence of a particular polynomial might
yield some information about the non-negativity of a trigonometric sum. This
intuition can be made precise, as pointed out in [4, p. 9], by invoking a result of
Dieudonné’s [11, p. 310]:

N

f(z) = Y a,z" is univalent in D if and only if (4)
n=1

f(ze?) — f(ze?)

ze't — ze7i9

N
= Y a,z" 'sin(k¢)/sin(p) # 0
n=1

forallzeD,0< ¢ < 7.

Thus if we assume Alexander’s result, and take a, = 1/n and z real, z — 1, it
follows that XY_; sin(n¢)/n > 0.

This implication is an early instance of the interactions between univalent
polynomials and non-negative trigonometric sums that occur in many varied forms
throughout the century. Let us look a bit more closely at the Fejér/Alexander
interplay: consider the pair fy(z) = ZV_,z*""'/Q2n + 1) and ¢,(9) =
TN ,sin(@n + 1)6)/2n + 1); fy is the partial sum of the Taylor series of
11og((1 + z)/(1 — 2)), which is univalent on D. Alexander considers arg [tangent
vector to fy(e'?)] = arglie’?fy(e'®)] = m/2 + ¢ + arg }y + ¥, arg(e'® —w,)
where {w,} are the critical points of f,,, namely {e’l’T/(N’“l)}2 2\ {1, -1}, and Cy
a constant. This argument is an increasing function of ¢, Wthh increases by 7
between successive critical points in the upper or lower half plane, and by 27
between an upper and lower plane critical point. Thus, for example, the image of

={z:z=¢"%, 0 < ¢ < 7} under f,, begins, when e’® =1, as a curve whose
right extremity, f(1), is positive and continues moving upward in the pure imagi-
nary direction (by conformality) tracing out a concave-down arc moving to the left.
The arc terminates with arg[tangent vector to fy(e'?)] = 37/2 when e'? encoun-
ters the first critical point of fy on A. Between this critical point and the next a
similar concave-down arc is produced, and the image of the lower portion of the
unit circle produces a mirror image of such arcs in the lower half plane. An arc
coming from a segment between two critical points in A4 can’t dip below the real
axis, for then symmetry would produce a corresponding curve in the upper half
plane, which, together with the first arc, yields a closed clockwise oriented circuit,
violating analyticity. Thus fy(A) is contained in the upper half plane, f,(A) is
contained in the lower half plane, and f) is univalent. Since univalence of an
analytic function on the boundary of its domain implies univalence on the domain
itself [28, p. 425], it follows as before that #,(0) > 0. See Figure 1.

Fejér managed to reverse this reasoning, passing from the trigonometric sums to
univalence. In [16], a lecture given at several universities in the U. S. that surveyed
some of his results on Fourier series, he noted Alexander’s example and offered an
alternative proof of univalence: writing fy(e'?) = u(8) + iv(0) where u(0) =
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Figure 1. P(z) =z + 323 + 125 + L7,

XN jcos(2n + 1D8)/Q2n + 1) and v(8) = TV_;sin((2n + 10)/Q2n + 1), he
claimed as “well known” that »(§) >0, 0 < 6 < #, and pointed out that
du(e'®) /90 = —XN_sin(2n + D6 <0, 0 < 6 < m, and thus that fy(e'),
0 < 6 < m, traces out a curve whose real part is monotonically decreasing and lies
in the upper half plane. These two facts together with symmetry of the map with
respect to the real axis allowed Fejér to conclude that the image of the unit circle
under f, is a Jordan curve, and hence f, is univalent.

More generally, Fejér considered the class of functions f = u + iv analytic in D
such that (i) f has real coefficients, (ii) Ju(e’®)/90<0, 0 <6< w, and
(i) v(e’) = 0, 0 < @ < . Fejér’s argument shows that these functions are univa-
lent on D. Functions in this class are said to be “convex in the vertical direction”
for the obvious geometric reasons. In a later paper [18] Fejér realized that the
condition v(e’?) > 0 is redundant, and in [19] two rigorous proofs of the univa-
lence of these vertically convex functions are given that use (i) and (ii) alone.
Furthermore, since du/d6 = 0 on the real axis, it is clear that harmonicity of
du /90 implies that the images of u(e?) and u(re’®), 0 <r < 1,0 < 6 < , share
the same “continual movement to the left” property. In addition, we may speak of
a function analytic only on D as “vertically convex” if (i) is satisfied and (ii)
du(re’®) /90 < 0,0 < 6 < 7, for all r € (0, 1); such functions are clearly univalent
in D. Fejér and Szegd [19] point out that the univalence of a vertically convex
function can be formulated as a fact about sine series alone, namely that
Yy sin(k6) > 0 implies X, ¢, sin(k6)/k > 0,0 < 6 < .

It is easy and fun to generate examples of polynomial members of the class. For
example, Py(z) = V212" /n + zV /2N is in the class; this follows since du(e’®)/
90 = — XN -lsin (n0) + (—sin (N8))/2 = — 3[XV-!'sin (n0) + TN_;sin (n6)] =
—sin 2(N8/2)cot(6/2) < 0. See Figure 2.

Another easy example, considering Fejér’s 1910 conjecture, is ©Y_, z" /n?, since
du/30(e'®) = —LN_ sin(0)/n < 0 for 0 € [0, 7]. Let us now look at more ways
in which non-negative trigonometric sums can produce facts about the vertically
convex class.
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Figure 2. P (2).

3. FEJER’S “THIRD MEAN” AND “FOURFOLD MONOTONE” THEOREMS.
In 1927 Szegd [39] proved that if f(z) = X,_ja,z" is univalent in D then
Py(z) = XN _;a,z" is univalent in {z:|z] < 1/4}, N = 1,2,... . Clearly the partial
sums of the Taylor series of a function univalent in D need not also be univalent
throughout the disk: f(z) =z/(1 — z) provides an easy counterexample. In 1933
Fejér [15] considered beginning with the vertically convex class and seeing if
smoothing the partial sums would produce polynomial approximations univalent in
D. He succeeded in proving that the third Cesaro mean of a vertically convex
function is vertically convex in D, and his proof provides additional ways in which
non-negative trigonometric sums contribute to the generation of univalent polyno-
mials. Before we sketch this proof, let us recall some summability facts.

Given an infinite series Y;_,u,, we define s = X7_ u,, s = ¥7_ 5O, and
in general s$") = ¥7_ s¢VY; sV is the N-th order partial sum of index n. We

N
generating the s\) is to note that for 0 <r <1, if F(r) = p_,u,r*, then
F(r)/(1 — )N = T2 _ stk It is easily shown that sV = Z=0(”_'L+N)uk,
[22, p. 96). _

If we begin with a vertically convex function f(z) = X7_;a,z" in D and assume
that a, = 0, then we have f(e?) = u(e'®) + iv(e’?) = T2_,a,cos (nf) +
i, _pa,sin(n6), with ©_;a,cos(nf) monotone decreasing for 0 < 6 < ar. Our
goal is to show that the third mean of f also is vertically convex. It suffices to show
that the third mean of X,_;a, cos(n6) is monotone decreasing on [0, 7 ]. Fejér
- effectively proves this by showing that the third mean of — X _,a,cos(n6) + A4 is
monotone increasing, where A4 is a constant large enough so that
- _oa,cos(n@) + A is positive on [0, 7 ].

The proof is by approximation, and we note that the third mean of the cosine
series can be written as an integral convolution of the series with a positive kernel.
It is sufficient to prove the theorem for monotone increasing step functions, which
uniformly approximate —X_,a,cos(n6) + A; for these functions it is in turn

define S = sV /(N " ), the Cesaro mean of order N and index n. A classical way of
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sufficient to prove the theorem for a one-step function of the form

(8) = 0, 0<6<a, O0<a<mw
8 b, a<b<m,

where b > 0. The cosine series for g(6) is 2b/w{(w — a)/2 — L} _,sin (ka)
cos(k6)/k}; it is this series whose third mean must be proved increasing. This
third mean has

s2(0) = — i (n N I; + 3)sin(ka)sin(k(‘));
k=1

thus we need to show

Y (n _§+ 3)sin(ka)sin(k@) >0 for0<6<.
k=1

This occurs, according to a lemma of Fejér’s [3], if and only if
',;=1("-’3<+ 3)k sin(k6) > 0, for 0 < 6 < 7.
Thus the entire result hinges on non-negativity of the third mean of the series

%_ok sin(k@), which Fejér proves by the generating function technique. He
proves that all the coefficients in the series for F(r)/(1 — r)* are positive, where

- (1-r)
F(r)= )Y nr"sin(n@) = (rsin 9) o
n=0 (1 —2rcos 6 + r?)

an identity that follows by differentiating the series form of the Poisson kernel (3).
Then he notes that the right hand side equals

(a-r)
1 (1 -r)’(1—2rcos6+r%) |

2

1
rsin (0) -

The term (1 — r?)~! clearly has non-negative coefficients in its power series, and
the term in the brackets is equal to X_,[sin (n + 1)6/2) /sin (8/2)]*r" since it is
the Poisson kernel divided by (1 — )% This series clearly has non-negative
coefficients. Thus every factor in the product for F(r) has a power series with
non-negative coefficients, and so F(r) itself must have a power series with
non-negative coefficients. The theorem in the case in which f is vertically convex
in D follows easily.

It is easy to generate examples of univalent polynomials using this theorem.
Using the fact that the vertically convex class is closed under convex combinations
and that fi(z) =z/(1 +2), f(z2) =z/(1 —z), and f3(z) = (i/2)log((1 — iz)/
(1 + iz)) are all convex (hence vertically convex), we may form the function
1/2)f(z2) + A/Df,(2) + (1 /4)f5(z) whose third mean of degree 6 is shown in
Figure 3.

As a final note on this theorem we remark that it gave rise to another result of a
similar nature due to PSlya and Schoenberg in 1958 [30]. In this paper the third
Cesaro mean is replaced by the de la Vallée Poussin kernel. It is proved that if
f(z) = X, _,a,z" is univalent and convex in D, that is, if the image of D under f
is a convex set, then the polynomial

L ron i it
Pn(z)=ﬁj; w,(t — ) f(rei¥)dt, z=re",
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-2 2
-2l
Figure3. P(z) =z — 522 + £2° — 352* + 225 — 425
is convex also, where
2
L (n!)
w,(t)=1+2Y cos(kt) =0

ioy (n—k)!(n+k)!

is the de la Vallée Poussin kernel. Thus another positive trigonometric sum gives
rise to univalent convex polynomials.

Non-negativity of the third mean of X,_,nsin(n6) allowed Fejér to obtain
another elementary result, which can also be used to generate examples of
vertically convex polynomials [17]. We prove the result for polynomials only,
though it is valid for Taylor series. Assume that P(z) = X¥_,a,z" with a, > 0.
Define A'(a,) =a, —a,_,, A*(a,) = A'(A'(a,)), and so on. Assume now that
A*(a,) = 0 for all n, where for n > N we put a, = 0; such a sequence is called
“fourfold monotone.” We show that P(z) is vertically convex: if P(z) = u(z) +
i(z) then u(e’®) =XV _ a,cos(nh), hence Ju(e’®)/90 = —LN_ a,(nsin(noh)).
Now summation by parts four times on this sum shows du(e®)/30 =
—XN_sPA%a,), where s® is the third order sum of Y7_,nsin(nf). Thus
du(e'®) /90 < 0, and we are done. Fejér was also able to conclude that, under
these same hypotheses, |P(e®)|* is a decreasing function of 6 for 0 < 6 < .
Noting that |P(e®)|* = A4, + 2X°_, A, cos(nf) with A, = X;_,a.a,,,, he
pointed out that fourfold monotonicity of {a,} immediately implies fourfold mono-
tonicity of {A,}, whereupon his earlier argument gives the result.

A polynomial satisfying fourfold monotonicity is shown in Figure 4. It is a third
* Cesaro mean for the function z/(1 —z), and there are several points of zero
curvature on this curve. Shortly after Fejér proved this theorem, Egervary [13]
proved that this function is actually convex, not just vertically convex.

Through the years the “fourfold monotone” theorem has been improved: in
1941 Szegoé [38] replaced fourfold monotonicity by threefold to achieve univalence,
but not necessarily vertical convexity, and in 1968 Robertson [32] showed that
under the hypothesis of threefold monotonicity f is also close-to-convex; see
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Figured. P(z) =z + 322 + 123 + Lz*.

Section 4 for a definition of this property. Convexity of the higher order Cesaro
means of z/(1 — z) continues to be of interest [35].

4. STARLIKE AND CONVEX CLASSES. Vertical convexity is only one of several
kinds of geometric conditions on an analytic function that imply univalence. Better
known are starlikeness and convexity: a function analytic in D is said to be convex
in D if the image of D is a convex set, and it is said to be starlike in D if the image
of D is convex with respect to the origin. There are analytic conditions that imply
these properties: if f is analytic in D, f(0) = 0, and f'(0) = 1, then f is univalent
and starlike in D if and only if R[zf'(z)/f(z)] > 0 for all z € D; it is univalent
and convex in D if and only if R[1 + zf"(z)/f'(z)] > 0 for all z € D. Further-
more, Alexander proved [1] that if f is analytic in D, f(0) = 0, and f'(0) = 1, then
f is convex in D if and only if zf'(z) is starlike; this allows us to derive facts about
one class from facts about the other.

We can use these analytic conditions and facts about non-negative trigonometric
sums to produce examples of polynomials in the convex and starlike classes. Let
P(z) = XY _,a,z" with a, > 0; assume that {na,} is twofold monotone, where we
assume a, = 0, n > N. Then {a,} is also twofold monotone, and hence if P(e'?) =
u(e®) + iv(e’®) = ¥N_,a, cos(n@) + iX_,a, sin(n6), we have by a result of Fejér
[18] that v(6) =0 for 0 < 6 < 7. Since v(x) =0, —1 <x <1, it follows by
harmonicity of v that v(re’®) > 0 for 0 < @ < 7, and 0 < r < 1. Similarly, v(re’®)
<0 for m< 0<2w, 0<r<1. Fejér notes that NR[zP'(z)/P(2)] = (w —
Wv)/(u* + v*) and that 2(uv' — w'v) = By + 2X5_, B,cos(nf), where B, =

712k + nXaga,,,) n=0,1,2.... He then rewrites 2k + n)a,a,,, =
ka,(a,,) + a,(k + n)a,., and points out that the twofold monotonicity of {ka,}
is passed on to the B, sequence, whereupon it too produces a non-negative cosine
series for the numerator of R[zP'(z)/P(z)], z = ¢’. The argument principle
forbids any zeroes of P on R under these circumstances. Thus the numerator
series remains non-negative if we move to re', 0 < 8 < 7, 0 <r < 1, and the
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Figure 5. P(z) =z + 32% + 2% + &z%

demoninator is nonzero on this circle. Hence, harmonicity of R[zP'(z)/P(z)]
ensures that it positive throughout rD, 0 < r < 1. Thus P(z) is starlike univalent
in D. See Figure 5 for a simple example.

A different approach to the study of univalent polynomials began in the 1950’s.
One fixes a degree, say N = 3 or 4, and determines the set of all univalent or
starlike polynomials P(z) = Y_,a,z" of this degree with real coefficients. The
problem for univalence and N = 3 was solved in several ways ([10], [25], and [5]);
the problem for starlikeness and N = 3 was solved by Brannan and Brickman in
1975 [7]. The solution in these cases produces a set {(a,, a;): a,, a; € V; < R?}; V,
is called the “coefficient body” for the problem.

Let us consider the coefficient body of starlikeness for N = 3: if we assume
P(z) is univalent and starlike in D, and in no larger disc, then P(z)/z # 0 in D,
and thus R[e’P'(e’?)/P(e’®)] = 0, 0 < 6 < 27. This is equivalent to Q(8) =
(1 + 242 + 3a%) + a,(3 + 5a;) cos 6 + 4a; cos(26) = 0 for 0 < 6 < 2. This in
turn requires an easy but messy analysis of conditions on A, and A, that assure
14 A;cos 6 + A, cos(260) > 0; the answer is given in [7, Lemma 2]. The problem
is then to use this lemma to produce the boundary curves for the coefficient body
V.

Brannan and Brickman obtain the region pictured in Figure 6, whose boundary
curves are a3 = [32a,(1 — 3a;)1/(9 — 25a;), $<a; <3, and the lines a, =

+ 3(1 + 3a;) for — ;< a; < 1. Thus some elementary facts about lower order
trigonometric polynomials can generate the entire coefficient body of third degree
starlike polynomials.

In an unpublished result the second author (F. H.) has found the coeffi-
cient body ¥, c R% In a way similar to that in the preceding paragraphs it
is easily seen that Py(z) =z + a,z* + ayz® + a,z* starlike in D is equivalent to
0,0) =5a,cos(30) + (4a, + 6a,a,)cos(20) + (3a, + 5a,a; + Tha,) cos 6 +
1 + 2a% + 3a% + 4a? = 20a, cos® 0 + (12a,a, + 8a;) cos® 0 + (Ta,a, + 3a,
15a, + 5a,a;)cos 0 + 4ai — 6a,a, + 3a> —4ay; + 1+ 2a3 >0 for 0 < 6 < 2.
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Figure 6. Coefficient body in (a,, a;).

This requires a careful analysis of the non-negativity of the cubic R(x) = x> +
Bx* + Cx + D (x = cos 6) on [—1, 1]. These conditions can be translated to R3 to
find the coefficient body in terms of a,, a;, a,. The resulting coefficient body is
found to have a boundary consisting of the planes II;: 4a, + 3a; + 2a, + 1 =0
and II,: 4a, — 3a; + 2a, — 1 = 0 and a manifold given by a very complicated
expression in a,, a5, a,. However, the surfaces can be analyzed and the maximum
values of a, and a, on V, can be found [f,(z) =z + (1.108...)z% + (0.599...)z3
+ (0.1453...)z* maximizes a,, while f,(z) =z + (1.0803...)z + (0.62138...)z>
+ (0.17588...)z* maximizes a,.] It is interesting to note that although V; is a
convex body in R?, V, is not convex in R* P(z) =z —z*/4 and P,(z) =z +
z%/2 — 143z* /1000 are starlike, but [ P(z) + P,(2)]/2 is not starlike.

Fejér’s result mentioned in the first paragraph of this paper allowed Brannan
and Brickman to describe the coefficient body for polynomials of the form
P(z) =z + a,z* + Bz>, with B € R and a, € C, that are starlike and univalent.
This is one of the few cases in which anything is known about polynomials with
even one complex coefficient. Brannan and Brickman again analyze
R[e?P'(e)P(e'?)] = 0, and produce the relevant non-negative trigonometric sum.
The parametrization for the boundary of this region is extremely complicated,
although it involves only quadratic and square roots. A Maple V printout of this
boundary in the first quadrant for B = + is shown in Figure 7, along with a graph

0.2
0.15
0.1

0.05

f
-1 0 1 2
) -1

-2 %: o0z 03 04 05 06 07 08

@ (®)

Figure 7. P(z) =z + (3 + iz)z% + 32°.
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of the image of D under P(z) =z + (10 + 3i)z?/20 + z3/5, a polynomial with
coefficients in the region.

In a 1987 paper [34] Ruscheweyh used some specific non-negative trigonometric
sums to derive other hypotheses that guarantee starlikeness of a polynomial; the
sums in question were due to Vietoris; see [2, p. 5] for more detailed consideration.
Vietoris’ inequalities are: if b, > 0, b, > 0, and the b,’s are nonincreasing and
satisfy (2k)b,, < 2k — 1b,,_,, then both X}_,b, cos (k6) > 0 and
Yi_obrsin(k6) > 0 for 0 < 6 < . Ruscheweyh connected two conditions on
polynomial coefficients that used these nonnegative sums to prove starlikeness of
f(z) = XI_,a,z* His conditions are: (A) a, > 0, a, = 1, (k + Da,,, < ka,, for
keZ*, and B) 2k + Da,,,; < 2k — Da,, for k € Z*. He proceeded as
follows: if f(z) = X7_,a,,,z* and a,,, =0, then f'(z) = Z¢_,(k + Da,,,z*.
With b, = (k + Da,,, we see that (A) and (B) imply (A): XLi_,(k +
Day,co8(k6) >0, and (B): Li_(k + Da,,,sin(k6) >0 for 0 < 6 < 7 by
Vietoris’ inequalities. Then (A) and harmonicity of R[f'(z)] imply (A"): R[f'(2)]
>0 on D, and harmonicity of J[f'(z)] on D N {z:3J(z) > 0} implies either
f(z) =z or J[f'(z2)] >0 in D N {z:3J(z) > 0}). The condition J(f'(z)) > 0 in
D N {z:3(z) > 0} is equivalent to (B"): J[f'(2)]1¥(z) >0 on z € D\ R.

The two conditions (A’) and (B”) together imply starlikeness. We use
f(2)/(zf'(2)) rather than its reciprocal, and note that

M) af(e)
7@ hFe

Now if J(z) > 0, then (B") implies J[f'(¢z)] > 0 and J[f'(z)] > 0, and (A")
implies R[f'(2)] > 0 and I[f'(z)] > 0. Since the numerator and denominator of
the integrand are in the first quadrant, their quotient has positive real part for
each ¢. It follows that R[f(z)/zf"(z)] > 0 in J(z) > 0; a similar argument works
for J(z) < 0. Thus f is starlike in D. An example of a polynomial satisfying this
condition is given in Figure 8.

z€D.

1
—_

(=)
—
N

._.2.

Figure8. P(2) =z + 322 + 223 + 324 + 32° + 2% + 3527 + 352% + 52°.
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It is worth noting that condition (A’) alone implies univalence; this is known as
the Noshiro-Warshawski Theorem, and it follows immediately from the fundamen-
tal theorem of calculus: if z, # z, € D, then

1(z0) = f(z2) = = (2 dz = (22 = 2) [ 7y + (1 = )z) dt £ 0

by (A"). A function satisfying (A’) is an example of a close-to-convex function: for
increasing 6 the argument of the tangent vector to f(re’?) never decreases by more
than 7 from any preceding value. Using the condition (A’') and any non-negative
trigonometric sum it is easy to construct examples of close-to-convex polynomials.

5. COEFFICIENT BOUNDS. The univalent polynomial Py(z) = X)_,a,z" and
the non-negative trigonometric sum T (8) = A, + ZN_, A, cos(n8) + w, sin(n8)
have a common feature: there are bounds on the sizes of their coefficients. In the
case of 7 (6) > 0 one can obtain a trivial bound by noting that

| A

al

—71;[# Ty(6)cos(nb) do| < —71;[77 |Ty(0)]||cos (n0)|d6

= — w(8)|cos(n < — N = 2.
7T[_WT (6)|cos (n6)|do W[_WT (6)d6 =2

These bounds can be improved: with Ay = 1, Fejér [31] obtained /A + ui <
2cos(m/(n + 2)) and |Ay| < 1. Holland [23] obtained bounds for all A,, provided
w, = 0 for all n, that is, |A,| < 2cos(w/(v + 2)), where v is the greatest integer
less than or equal to N/n. His proof involves much computation but uses only
basic facts about linear algebra and complex numbers.

For univalent polynomials the only easy bound is on a,; since Py(z) # 0in D
it follows easily that |ay| < 1/N. For the remaining coefficients we can obtain
bounds if the a, are real. Dieudonné did this in 1931 [11] by using his criterion (4).
He noted that univalence of Py(z) implies D(x, ¢) = XN_ a,x" 'sin(n¢)/
sin¢ > 0for —1 <x < 1, since a; = 1 > 0. He then constructed

¥(x, ¢) = 2sin’ ¢D(x, ¢)
=1+a,xcos ¢ + (azx?> — 1)cos (2¢) + -
+(a,x* —a, ,x"*)cos ((n — 1)¢) + -+ +a,x""'cos ((n + 1) ¢).

Thus for any fixed x € [—1, 1], (x, ¢) is a non-negative cosine sum. Applying the
bound (5) and letting x — 1 yields the bounds |a,| <2, la; — 1| <2, and
la, —a,_,| <2 for n > 4. It follows easily by induction that |a;| < n for all n,
which verifies the Bieberbach conjecture for univalent polynomials with real
coefficients. These bounds can be improved by using the sharper estimates for |A,,|
obtained by Fejér and Holland [23].

In a 1970 paper Michel [29] proceeded along similar lines to obtain a sharp
bound on coefficients of univalent polynomials P,(z) = L_;a,z" with real coeffi-
cients and |a,| < 1/4. Here is his argument for |a,|. Working with D,(x, ¢) =
Y4 _ja,x" sin(ng)/sinp >0 he let x > 1 and rewrote D,(x, ¢) itself as
a cosine series to obtain (1 + a;) + 2(a, + a,) cos ¢ + 2a; cos 2¢p) +
2a,c08(3¢) = 0 for 0 < ¢ < 2. He then used this to obtain two inequalities: by
using Fejér’s bound on |A,| he gets (a, + a,) < 1/4)(1 + V5)(1 + a3), and mak-
ing the clever choice of ¢ = 3m/5 he gets (a, + a3) < (1/2)(1 + V51 + ay).
These two inequalities can be combined with the bound |a,| < 1/4 to obtain
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la,] < (3/8X1 + v5) =12135... . This bound was obtained earlier by Suffridge
[37] as a special case of his results on univalent polynomials with real coefficients
and ay = 1/N He also showed that the polynomial P,(z) =

(3/8)(1 +V5)z22+ (1 /4)(1 +v5)z® +(1/4)z* is univalent. We conclude by turn-
ing to Suffridge’s results in a different context.

6. NON-NEGATIVE TRIGONOMETRIC SUMS AS REPRESENTING
MEASURES. Here is how the first author (A. G.) became interested in these
matters: In [37] Suffridge introduced the polynomials P(z,n,j) = Lj_, A, ;z%,
where

n—k+1sin(ke; ,) jm

A, = - —,a;, , = ——, j,k=1,...,n; 6
k. n sing; , 7" n+1’ / ’ (6)

note that A, ;= +1/n, for all j. For g —1 a, real for k=2,...,n, and
la,| = 1/n he proved that if f(z) = k_lakz is univalent in D (the class of such
polynomials is denoted by Q), then f(z) = X” _, «,,P(z, n, m) for some a,, > 0,
m=12,...,nand ¥}, _, @, = 1. These polynomlals have other extremal proper-
ties including those involving the coefficients mentioned in the last section:
la,| <A, ,, for instance, if a, = 1/n. In independent work MacGregor, Brickman,
Hallenbeck, and Wilken ([8], [9], [26]; see also [27]) considered classes of functions
f(z) =z +a,z* + a;z° + -+ analytic in D for which

f(z) = [Tz du(6) fora>0 %
= - . a a >

0 (1-e'%) #
for some probability measure w on [0,27]. The class of such f is denoted .7°; the
class with

27 1
z) = ——du(6
f(z) jo TP ()

is called .7,. They prove that & can be described as the closed convex hull of the
family of starlike functions in the topology of uniform convergence on compact
subsets; in particular, all starlike mappings are in .%. They pointed out that all
univalent functions with real coefficients are also in ,%0, although MacGregor [26]
constructed a univalent function in D for which there is no complex Borel measure
giving the representation (7) for a = 2.

The following question occurred to the first author. If P(z, n,j) €% for all
n, j, then what measure w = p, ; corresponds to P(z,n, j) i in the representation
(7)? An easy calculation shows that

11 n n—k+lsm(ka],,)

dp, = —|= +
Hei ™ 2|2 k§2 n ksin a

cos((k —1)60)|db;

it follows that the bracketed trigonometric sum must be non-negative. Is there an
~ alternative way to prove the non-negativity of this sum?
We are indebted to Richard Askey for pointing us toward [3], where elementary
means are used to prove that

1 Z o sin((k+1)a)
F(r,e.0) = ; (k + )sin a

-1<r<1,0<a, 6 < 7;

cos(k6) =0,
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the positivity of w, ; then follows by convolving F(r, , §) with the Fejér kernel
and letting » — 1. Moreover, the reasoning can be reversed: F(r, a, ) > 0 implies
that u, ; > 0 for all n and j; thus P(z, n, j) € %, for all n and j. It follows from
the representation of an arbitrary f € Q as a convex combination of P(z, n, j) that
Q c.%;. Furthermore, denseness of the class Q in the set of all univalent f with
real coefficients [36] and compactness of ,%0 shows that all univalent functions with
real coefficients are in % . Thus inclusion of these univalent functions in .7,
follows from the non-negativity of F(r, e, 6).

There is more going on here: the proof in [9] that univalent functions with real
coefficients are in &% followed from the observation that such a function is
typically real, i.e., it satisfies f(re'®)sin 6 > 0 for all r, 6, and that all typically real
functions are in &%. This follows in turn from a representation theorem due to
Robertson stating that if f is typically real then

T z
f(z) = j;) (1 —e€"z)(1 —e7''z) du(t)

for some probability measure w. Brickman, MacGregor, and Wilken note that to
prove the inclusion it is sufficient to prove that (1 — ¢”z2)"'(1 — e™2)"! € &, for
each ¢ € [0, 7], and this is a special case of a much more general theorem [9,
p. 96]. A first glance at the proof of this theorem doesn’t yield the representing
measure g, for (1 — e”z)"1(1 — e "'z)"!, but it follows easily that

 sin (k) }

F(r,1,6)d6 = — y
7F(r.1,6) T k=l(rz) sin ¢

27 z
/0 (1 —e%2) 8)

1 rz
oy [ (1 —re"z)(1 — re™"'z) ]
so that

(1-¢"2) (1= e2) " = lim [*"———— F(r,1, ) db.
0 (1-eiz)’

r—1

The representing measure for (1 — ¢ z)"'(1 — e "z) 7! is lim, _, ,F(r,t, 6) in the
weak star topology; for example, if ¢ = 0 it is the point mass at 0. The Suffridge
polynomials (6) are “smoothed out” partial sums of z/(1 — e“z)(1 — e™''z) for
certain choices of ¢, and their representing measures are “smoothed-out” versions
of F(r,t, 8) for those same choices of ¢, as r — 1.

Let us conclude by returning to the vertically convex class. One can show that
the vertically convex class is a subset of 7 as follows: f is vertically convex if and
only if zf’ is typically real [20, p. 206]; if zf' is typically real, then zf" €%, [9,
p. 96]; finally if zf' € %0, then fe %, the closed convex hull of the convex
functions [27, p. 399]. Thus there are many non-convex univalent functions in &,
and more can be concocted by finding representing measures relative to % for
some univalent polynomials. We conclude with such an example, the polynomials
of Alexander [1] considered at the beginning of Section 2. The polynomial
P(z) = ¥}_,z*/k is univalent and Brannan [6] proved it to be close-to-convex,
but even z + z2/2 + z3 /3 is outside the body of starlikeness given in Figure 7. We
can represent

P2 = [T gy )
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for w,(6) = 1/2 + cos 6/2 + cos (26)/3 + -+ +cos ((n — 1)8)/n. That
w,(0) = 0 is due to Rogosinski-Szego [33], so this non-negative trigonometric sum
gives an easy example of an f € .7 that fails even to be starlike, let alone convex.
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( From the MONTHLY 50 years ago. ..

[ Professor Z. T. Gallion of Southwestern Louisiana Institute presided at a joint
banquet with the Louisiana-Mississippi Branch of the National Council of Teach-
ers of Mathematics that was held at Oak Grove Inn Friday evening. Professor

C. V. Newsom of Oberlin College, Oberlin, Ohio, was guest speaker for both
organizations at the banquet and again on Saturday morning. His addresses were:

1. Relationship of the Association and the National Council.

| After reviewing recent developments in the field of mathematical education,
| Mr. Newsom emphasized that many urgent problems could be solved only by the
cooperation of college and secondary teachers. In particular, he suggested a study
of the entire mathematics curriculum from the first grade to graduate school in the
light of new mathematical knowledge that is available, the needs of modern
science, and the teaching problems introduced as a result of mass education.

2. Mathematics and our culture.

This paper presented some points of view in regard to the significance of
mathematics in man’s attempt to comprehend his environment. Mr. Newsom
expressed the idea that more of the philosophical contributions of mathematics
should be a part of all elementary courses in mathematics.

...from a report of a meeting of the Louisiana-Mississippi Section
MONTHLY 55 (1948) 660

L - ————— - e — — — -~

522 UNIVALENT POLYNOMIALS [June-July



