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1. Introduction

The polynomial p1(x) = x + (1/2)x2 is one-to-one on the interval (−1, 1). We

can show this algebraically: the equation x1 + (1/2)x2
1 = x2 + (1/2)x2

2 gives either

x1 = x2 or x1 + x2 = −2. This yields a contradiction if x1 6= x2 and both x1 and

x2 are in (−1, 1). An easier way is simply to note that p′1(x) = 1 + x > 0 on the

interval, so p1 is increasing there. This also tells us about the behavior of p1 on the

interval.

What happens if we replace x by z in the complex plane C and |x| < 1 by

|z| < 1? Does the polynomial p1(z) = z + (1/2)z2 remain one-to-one on the unit

disc D = {z : |z| < 1}? Since the algebraic argument above carries through with

complex numbers, p1 is indeed one-to-one on D. This is a proof, but it is not very

satisfying. Can we find a geometric reason for this behavior, something akin to the

increasing of p1 on (−1, 1)?

The simplest approach is to see how D is transformed by p1; what is the image of

D in C under p1? In Figure 1a we take a polar co-ordinate grid of D and produce

p1(D).

It appears that the disc has been stretched horizontally, folded and pinched to a

cusp at w = −1/2 in the range. Writing p1(z) = −1/2+(1/2)(z+1)2, we can verify

that p1 is one-to-one on D by using elementary mapping properties. The function

first slides D one unit to the right. Then the squaring function folds the arc of the

boundary touching the origin over the negative real axis. The remaining scaling

and shifting give us the one-to-one image. We can also see that circles centered at

the origin appear to go to heart-shaped curves in the range. More work shows that

if the circles are traversed counterclockwise, then the range curves have increasing
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Fig. 1a. p1(z) = z + (1/2)z2
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Fig. 1b. p1(z) = z + (1/2)z2

polar argument arg(p1(cos(t), sin(t))) as t increases. There is no “looping” of these

image curves over themselves. If there were, p1 would clearly not be one-to-one.

We do come close to this behavior at the range point w = −1/2, the image of the

critical point z = −1. Here the cusp would yield to a small simple loop if a circle of

radius 1 + ε were input into p1. See Figure 1b).
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There is some interesting geometry here. The set C = {z : |z| = 1} has been

transformed into an epicycloid. This can be seen by substituting z = cos(t)+ i sin(t)

into p1 and using the DeMoivre relations to get

x = cos(t) − (1/2) cos(2t), y = sin(t) − (1/2) sin(2t), 0 ≤ t ≤ 2π.

If our goal was to produce an interesting complex polynomial which is one-to-

one on D, we have succeeded, although only with a quadratic. But we were lucky.

First, a polynomial which is monotonic on (−1, 1) need not extend to one which is

one-to-one on D. If q1(z) = (z + 9/8)3, then we have critical points at z = −9/8

only, and q1 increases in (−1, 1). But q1 slides D into a disc centered at z = 9/8,

then the complex cubing map twists that circle over itself on the negative real axis

as shown in Figure 2a. Thus q1 is not one-to-one. Second, even requiring p′(z) 6= 0

on all of D does not guarantee what we seek. Our q1 also shows this.

On the other hand, a critical point anywhere in D ruins our chances. Our

p1(z) = −1/2 + 1/2(z + 1)2 transforms any small disc centered at z = −1 into

a self-overlapping image. If p1 were changed slightly so that its critical point were

in the interior, the new polynomial would fail to be one-to-one near that point. See

Figure 2 b, where we have used q2(z) = z +(5/8)z2 with q′2(−4/5) = 0. This kind of

behavior occurs for any polynomial at a critical point, perhaps with a higher degree

of looping. This can be seen by writing the polynomial in powers of (z− critical

point), as we have done for p1.

Why is it so hard to produce the simplest (i.e., 1-1) mapping behavior on D for

complex polynomials? What takes the place of “increasing or decreasing” in the

complex plane? What is the “typical” one-to-one image of D under a polynomial?

In this paper we explore these problems and give an approach that yields interesting

examples of these “simplest” of functions. Our procedure uses some several variable

calculus, brings in a force field first introduced by Gauss, and recalls polynomial

mapping ideas which were perhaps more familiar in the first half of the 20th century

but seem neglected now. On the way we will meet a complex version of Rolle’s

theorem. We will look at geometric properties of the images of D which were first

considered by the early 20th century American topologist J. W. Alexander, perhaps

better known for his knot polynomial and horned sphere (see [3]). We also study

inverse images of the polar co-ordinate grid under polynomials. We hope that this

approach serves as a good introduction to the geometry of complex polynomials.
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Fig. 2a. q1(z) = (z + 9/8)3
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Fig. 2b. q1(z) = z + (5/8)z2

There are several alternative words for one-to-one complex functions which have

become standard: simple, the German schlicht (= simple), and univalent (= one

value) are all common. We shall use “univalent” as our synonym for one-to-one.

All polynomials will be of the form p(z) = z + a2z
2 + · · ·+ anzn = z(1 − z/z1)(1 −

z/z2) . . .(1 − z/zn−1). Thus there will always be a single zero at the origin, and
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n − 1 “nontrivial” zeroes. We assume for simplicity that the nontrivial zeroes are

distinct. This form causes no loss of generality, as we are off from an arbitrary

polynomial only by a shift and a scaling. The identity function I(z) = z is obviously

univalent. It follows that if the remaining coefficients of p(z) are small relative to

1 (or, equivalently, the nontrivial zeroes are placed far away from the origin) the

resulting mapping is likely to remain one-to-one. But this is cheating! Such examples

will only perturb D slightly. We wish to do better. Using D as a domain is somewhat

arbitrary, but the work we are doing can be adjusted to any other domain. It will be

necessary to have a disc domain for our examples in Sections 6 through 8, however.

2. The Gaussian Force Field

In this section we introduce a force field which is central to our work. Let’s return

to our first polynomial, p1(z) = z+(1/2)z2. We ask: what is the inverse image under

p1 of a polar co-ordinate grid in the range plane? We are looking for two sets of

curves. The first is the set {z : |p1(z)| = r} for r > 0, the inverse image of a circle

centered at 0 having radius r. These are known as the level sets of p1. The second is

the set {z : arg[p1(z)] = θ}, the inverse image of a ray of polar argument θ through

the origin. Figure 3 shows these sets for p1 with several curves of the second set

labelled with their repective θ values. The darkened lines are the preimage of the

ray of argument 7π/8.

We note that the two sets form orthogonal families. This follows from the fact that

complex mappings are conformal, or angle and sense preserving, at all noncritical

points. There is again some nice geometry here: the level sets are lemniscates of

Bernoulli, first discovered by Jacques Bernoulli in 1694. The orthogonal family to

the lemniscates may be shown to be hyperbolae.

We need to insert a technical point here. Suppose we write p1(x + iy) = (x +

(1/2)x2 − (1/2)y2) + i(y + yx) = u(x, y) + iv(x, y). Our orthogonal families are

produced by the computer algebra system Maple in the following way. We choose a

point w in C, let upart = <(w), the real part of w, vpart = =(w), the imaginary part

of w. We would like to plot the curve
v(x, y)
u(x, y)

=
vpart

upart
. We use v ·upart = u·vpart to

avoid vanishing denominators. Thus the curves seen are actually the inverse images

of lines though the origin containing two rays in opposite directions. In addition the

form used may introduce some extraneous curves. Deciding which ray yields which
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Fig. 3. p1(z) = z + (1/2)z2

portion of the orthogonal curves and recognizing the extraneous curves is usually

easy.

The hyperbola family is suggestive. It reminds one of two fields of force, ema-

nating from z = 0 and z = −2 respectively, combining to form a single field. A

corresponding physical example would be the field between two repelling poles of

point magnets. We note that these points are the zeroes of p1. Can we find this

force field explicitly?

Let’s switch to several variable calculus mode, and make the correspondence

z = x + iy = (x, y) = x
−→
I + y

−→
J . The leminscates are the level curves of f(x, y) =

|p1(x+iy)| in the xy-plane. This brings to mind the gradient field of f , ∇(f)(x, y) =

∂/∂x(f(x, y))
−→
I +∂/∂y(f(x, y))

−→
J , since the gradient moves orthogonally to the level

curves of f(x, y). Our purpose will be better served by considering ∇(g), where

g(x, y) = (1/2) ln |p1(x + iy)|2. This gradient field will also follow the hyperbolae
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streamlines, since it too moves in the direction orthogonal to the level curves of f .

A calculation shows that

∇(g) = [
x

x2 + y2
+

x + 2
(x + 2)2 + y2

]
−→
I + [

y

x2 + y2
+

y

(x + 2)2 + y2
]
−→
J

.

But when this is written in complex variable notation, we get

∇(g)(x, y) =
1
z

+
1

z + 2
=

1
z

+
1

z −−2
.

We have found that the field F (x, y) = 1/z+1/(z+2) moves along the hyperbola

family. But there is more: F is a force field. If zk is a zero of p1, then 1/(z − zk) =

((z− zk)/|z− zk |) · (1/|z− zk |). This term can be viewed at a vector in the direction

from zk to z with magnitude inversely proportional to the distance from zk to z.

When placed at z it can be interpreted as a force vector from the “source” zk. Thus

F (x, y) is the sum of forces emanating from z = 0 and z = 2 acting at z = (x, y).

This force field was introduced by Gauss in 1816. His starting point was different:

for p(z) = z(z − z1) . . .(z − zn−1) he obtained by logarithmic differentiation that

p′(z)
p(z)

=
1

z − 0
+

1
z − z1

+ . . .
1

z − zn−1
.

Thus

p′(z) = p(z)[
1

(z − 0)
+

1
(z − z1)

+ · · · 1
(z − zn−1)

] = p(z)F (x, y).

Gauss concluded that the critical points of p are the points of equilbrium of F ,

along with zeroes of higher multiplicity. We can see in our example that the critical

point z = −1 lies at an equilibrium point on the real axis from the forces at 0 and

−2.

This observation was extended by Lucas in 1874 to what is now called the Gauss-

Lucas theorem: all the critical points of p lie in the smallest closed convex set in

which the zeroes lie. The proof of this follows immediately from the fact if z is not

in this set then the sum of the forces acting on z must point in a direction away

from the set. Thus z cannot be an equilibrium point. The theorem is a kind of

Rolle’s theorem in C. We will sharpen this result later in Section 5.

M. Marden’s book [6], first published in 1949, has more details on this theorem.

In another 1949 work [8], the American mathematician J. L. Walsh published the
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Fig. 4. Force field for p1(z) = z + (1/2)z2.

culmination of several decades of work on zeroes and critical points of polynomials

using the force field as his main tool. It was occasionally referred to as the “me-

chanical analogy” [4]. We point out that, except at the zeroes of p, the F (x, y)

is sourceless (divergence-free) and irrotational (curl-free), in the language of vector

calculus [2].

3. From The Force Field To Basins of Univalence

We again return to our initial example. The polynomial p1(z) = z + (1/2)z2 has

zeroes at z = 0 and z = −2, and the Gaussian force field associated with these

sources is illustrated in Figure 4.

We see that from each zero emanate lines of force dividing the complex plane

into two regions: B0 = {z : <(z) < −1} and B1 = {z : <(z) > −1}. The com-

mon boundary is the line {z : z = −1 + it, t ∈ R}. We shall call these regions

basins. The streamlines from this vectorfield follow the family of hyperbolae found

previously. Furthermore, it is evident that each basin is mapped univalently by p1.

Each streamline must map into a ray which is strictly increasing as the streamline

is traversed from the source out, since the streamline always travels in the direction

of increasing |p1(z)|. No two streamlines can be mapped to the same ray: following
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two such streams back to the origin produces two distinct segments emanating from

zero. But p1(z) acts like the identity I(z) = z near zero, so it can’t send these

segments to the same set. (An exception to this scenario occurs when a ray in the

range contains the image of a critical point, a so-called branch point. We will deal

with this case in the next section.) Since D is contained in B0, it too must be

mapped univalently.

This now suggests a plan to produce one-to-one polynomial mappings of D. We

begin with a single zero at the origin, insuring that the polynomial begins as z + · · ·
We then place other zeroes outside D. We configure them so that the resulting

Gaussian force field has D contained in the basin emanating from the origin. Let us

call this basin B0. The remaining zeroes cannot be too close to D, since, among other

things, an equilibrium point might occur in D, spoiling our chances for univalence.

But how far away and in what configurations can they lie to guarantee that D is

covered by B0? This question is not easy to answer, but experimenting with the

process is a fascinating and frustrating activity. One needs to get a feeling for how

the forces combine.

We illustrate the method with a second simple example. Place a zero at the origin

and nontrivial zeroes balanced collinearly with 0 at z1 = i
√

3, z2 = −i
√

3. This

gives p2(z) = z + (1/3)z3. We could show univalence of p3 algebraically as we did

for p1, but again this does not illuminate the geometry. The force at 0 is opposed by

the two forces at equal distances from the origin. The streamlines and the resulting

vectorfield are shown in Figure 5, along with the basins. We can see that vectors

from the origin are countered by those from the other sources until equilibrium lines

are formed along two symmetric boundary curves. It appears that D is contained

in B0, so we tentatively conclude that p2 maps D univalently. The image can be

shown to be an epicycloid with two symmetric cusps.

We can generalize this by placing a zero at the origin and the remaining n −
1 zeroes equiangularly on {z : |z| = n−1

√
n. It can be shown that the resulting

polynomial z + zn/n maps D univalently. The image is an epicycloid with n − 1

equiangularly placed cusps. Since n−1
√

n → 1 as n → ∞, our point sources grow

in number but paradoxically get closer to C! The cancellation of the forces due to

their orientation accounts for this phenomenon.

We should note that general properties of the streamline sets can be found in [8]

on p. 20. A similar analysis can be found in the first part of a long 1938 treatise by
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Fig. 5. p2(z) = z + (1/3)z3

the French mathematician L. Hibbert. This latter work includes the only diagrams

of decompositions of the plane into basins known to the authors. Hibbert calls our

basins “cellules d’univalence”. We will not need these deeper analyses, due to the

nature of our examples.

4. Using the Boundaries of the Basins

The success of this method hinges on being able to tell when D is in the basin

emanating from the origin. This can be a difficult if we rely on images of the

entire vectorfield or set of streamlines from each source. It might be hard to decide

containment based on any single image, and more images woud be required. It

is easier to find the boundary curves which separate the basins, and do analyses

based on them. This is what we shall do, but the matter is a bit tricky for both

mathematical and computational reasons. Let us see why.

The problem stems from the fact that the boundaries of our basins are related to

the pre-images of rays through the origin which contain branch points. In Figure

4 we see that, for example, the inverse image under p1 of a line through the origin

of slope tan(7π/8) forms a hyperbola which is close to the real axis and the line
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{z : <(z) = −1}. We can easily show that the preimage under p1 of the negative real

axis (which contains the branch point w = −1/2) consists of the line {z : <(z) = −1}
and the interval [−2, 0]. Note that this is the set toward which the highlighted

portion of the hyperbola is leaning, and that the line {z : <(z) = −1} is the

boundary between B0 and B1. Thus this preimage gives us our boundary, and

another extraneous piece, [−2, 0]. In addition, if we use the computational approach

described earlier, the equation v · upart = u · vpart becomes y + xy = 0. This gives

the curves x = −1 and y = 0, in other words, our boundary together with the entire

real axis!

In practice these extraneous pieces are easily identified. They often can be seen

as dividing the flows into further compartments within a given basin. The real

axis here separates the streamlines in the upper and lower half planes of C. We

will adopt the attitude that a little experimentation will be enough to decide which

curves form the boundaries we need. A deeper study of these curves would allow

us to understand the mapping behavior of polynomials on the entire complex plane,

but that is not our goal here.

We can now return to p2(z) = z + z3/3. We find that there are critical points

at z = ±i, with branch points at w = ±(2/3)i. With u = x + (1/3)x3 − xy2 and

v = y+x2y−1/3y3, our attempt to find the boundaries of the basins by our procedure

yields (2/3)x + (2/9)x3 − (2/3)xy2 = 0. We have asked for the preimage of the

imaginary axis to get this equation. The equation yields the hyperbola y2−x2/3 = 1

and the imaginary axis x = 0. When we consider the three sources at 0, ±
√

3i,

it is clear that the hyperbola is the boundary of interest, and the imaginary axis

is extraneous. Thus the three basins are determined by the three sections of the

plane into which the hyperbola divides C. Since D is contained in B0, p2 maps it

univalently. The basins are illustrated in Figure 5.

5. More Examples

In this section we give several more examples of our approach. Bear in mind that

these example are a result of some experimentation. They would not immediately

suggest themselves. Rather they were found in some cases by trial and error and in

other cases by looking at polynomials available in the literature.

Our first is a modification of q2 in the introduction:

p3(z) =
(z + 2/

√
3)3 − (2/

√
3)3

3(2/
√

3)2
= z + (

√
3/2)z2 + z3/4.
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Fig. 6a. Force field for z + (
√

3/2)z2 + z3/4.

This cubic has nontrivial zeroes at −
√

3 ± i, a critical point of multiplicity 2 at

z = −2/
√

3, and branch point w = −2/
√

9. The three zeroes lie equiangularly

spaced on the circle |z+2/
√

3| = 2/
√

3, producing the single equilibrium point at the

center of the equilateral triangle they form. We might anticipate that p3 will twist

D around the branch point. We find the basin boundaries by finding the preimage

of the real axis. This gives the three lines −2/
√

3 + r[cos(kπ/3) + i sin(kπ/3)], for

k = 0, 1, 2, −∞ < r < ∞. See Figure 6a.

B0 is bounded by lines corresponding to k = 1, 2 above, and D is contained in B0.

Notice that some flowlines emanating from 0 exit D and then re-enter, and exit once

again. One such is shown in Figure 6b and 6c. This implies that the corresponding

image ray will exit p3(D), re-enter and exit as well. The image of D under p3 is

shown in Figure 7a and 7b, verifying our observations.

This polynomial is one-to-one on D, but only just so! It bends D around to meet

itself on the negative real axis. This polynomial was introduced by the topologist

J.W. Alexander in [1], the reading of which is an excellent exercise in understanding

polynomial mappings.
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Fig. 6b, 6c. The unit disc and a streamline of p3.
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Fig. 7a. p3(z) = z + (
√

3/2)z2 + z3/4

Our next example shows how complicated even cubics can be: let p4(z) = z +

(7/8)z2 + (7/25)z3. The roots, critical points and branch points are all conjugate

pairs in the second and third quadrants. We omit the expressions since they are
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Fig. 8a, 8b. Basin boundaries and streamlines for p4(z) = z + (7/8)z2 + (7/25)z3.

complicated and won’t add to our analysis. Preimages of the lines through the

branch points are real cubics of two variables known as cubic hyperbolae. One is

shown in Figure 8a. A zero is marked by a square in the second quadrant. The

intersection of two portions of the cubic hyberpola is a critical point.

There are three basins. The boundaries of the Bk are the portions of these curves

which pass through no zero of p4. They are darkened in Figure 8b. The zeroes are

the centers of the three collections of longest arrows. It can be shown using MAPLE
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Fig. 9a,b. p4(z) = z + (7/8)z2 + (7/24)z3

that D is contained in B0. The image of D under p4 is shown in Figure 9a. Figure

9b contains an enlargement of the part of the image near w = −0.5 along with a

ray emanating from the origin.

The collection of curves in 8a illustrates a sharpening of the Gauss-Lucas theorem.

Note that the critical point in the second quadrant lies at the end of a force line

from 0 and one from the zero in the same quadrant. Thus if a streamline connects

one zero of a polynomial to another, there must be a critical point on the line. This

was proved by Hibbert. His proof did not use the force field, however. Also, one

does not always have such a streamline for two arbitrary zeroes.

Moving to quartics, we let p5(z) = z + (7/6)z2 + (4/6)z3 + (1/6)z4. In this case

we have zeroes at 0, −2, and −1 ± i
√

2, with critical points at −1, −1 ± i
√

2/2.

We have built on p1 by adding to {0,−2} a conjugate pair of forces. These new

forces preserve the critical point at z = −1 but are far enough away from C to not

introduce any more such points in D. We find that there are four basins bounded

by the line {z : <(z) = −1} and the two branches of the hyperbola as shown in

Figure 10.

Again it can be shown that D is contained in B0, so p5 maps D univalently. Note

the healthy magnitudes coefficients of p5!
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Fig. 10. Force field and basins for p5(z) = z + (7/6)z2 + (4/6)z3 + (1/6)z4.

We end this section with a higher order polynomial found by experimenting with

the placements of the nontrivial zeroes. Set them around the circle {z : |z| = r}
at angles ±π/8, 2π/3 ± π/8, and 4π/3 ± π/8. This choice yields p6(z) = z −√

2 −
√

2z4/r3 + z7/r6. The choice of r = 1.4 gives the “septic” which sends D to

the image shown in Figure 11. The basins are quite complicated in this case, but

it is straighforward to keep D inside B0. By allowing the zero pairs to get close

together while pulling then further away from the origin (to weaken their acquired

strength) we can produce many variations on this example.

6. Starlike Polynomials

Among the polynomial examples given so far we can detect one difference. For

some, the force field streams emanating from 0 exit D and never re-enter. The

polynomials p1 and p2 exhibit this. For others, given streamlines may exit, re-enter,

and exit again, as in p3. The first two are examples of starlike complex functions.

Each streamline starting at 0 and ending on a point of C is sent to a ray in the range

also starting at 0. The collection of all such rays is called a “star” centered at 0. The

star as a set in the complex plane was introduced by the Swedish mathematician
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Fig. 11. p6(z) = z −
√

2 −
√

2z4/r3 + z7/r6 with r = 1.4.

G. Mittag-Leffler around the turn of the 20th century. Alexander defined it as “A

region every point of which may be joined to a point ‘a’ [the center] by means of

a linear segment consisting only of points of the region . . . ” The topologist looked

at polynomials which mapped D onto star-shaped images centered at the origin by

looking at the image of C as a curve. He noted that for these functions f the polar

argument of f(z) “. . . is a never decreasing function of θ = arg(z) as z describes

the unit circle [C] in the positive sense”. In our example p1 we saw this behavior.

Hibbert noted that each of his “cellulues d’univalence” are mapped to “une étoile

de Mittag-Leffler”.

Our force-field interpretation is useful in dealing with starlike polynomials. The

fields which yield star-shaped images are those where the force vectors from the

origin have an “always exiting” behavior. More exactly, isolate a force vector at

z = r(cos(t) + i sin(t)), where 0 < r < 1. The tangent line to {z : |z| = r} at z

divides C into two half planes. The force vector will lie in the plane which does not

contain {z : |z| = r}, thus pointing “outward” from the circle. This property does

not allow a streamline to exit D and re-enter, as happens in p3.
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Using this idea, it is easy to construct a family of starlike univalent polynomials

p(z) = z + a2z
2 + · · ·+ anzn given by Alexander, and to prove one of his theorems

related to them. Given a zero at 0, he found a “safety radius” R such that any

placement of the n − 1 remaining zeroes z1, z2, . . .zn−1 with |zk| ≥ R yields a

starlike univalent polynomial. For us this is asking for a value R with the following

property: placing zeroes beyond or on {z : |z| = R} insures that the field from the

origin is “always exiting” concentric circles centered at 0 with radius less than 1.

We claim that R = n will do, and that it is the best that can be done. If we fix

z = r in D, then placing z1 = z2 = · · · = zn−1 = n produces a resultant force at z

equal to 1/r − (n − 1)/(n − r) = n(1 − r)/r(n − r) > 0, with equality if z = 1. It

is clear that if the nontrivial zeroes are any complex numbers greater in magnitude

than n, the “outward pointing” condition still holds at z = r, since the sum of the

forces from {z1, z2, . . .zn−1} is weakened. A similar argument applies to any z in

D.

Thus for each integer n > 1 we have a starlike univalent polynomial sn(z) =

z(1 − z/n)n−1, with all nontrivial sources concentrated at z = n. We also have a

whole family of others with nontrivial zeroes larger in magnitude than n. We get a

bonus: using Sn(z) = [z(1 + z/n)n]/(1 + z/n), and letting n → ∞, we can conclude

that zez is starlike and one-to-one on D, where ex+iy = ex(cos(y) + i sin(y)) is the

complex exponential function. This requires knowing that the limit of univalent

functions is univalent, a fact we borrow from complex variable theory. (Actually the

convergence is required to be uniform on closed subdiscs of D.)

Finding such “safety radii”, known as radii of univalence or radii of starlike-

ness, became of interest to some leading analysts of the early 20th century. Al-

though hardly in the forefront of their research interests, the French mathematician

J. Dieudonné and Hungarian mathematicians L. Féjèr and G. Szegö each visited

this problem.

7. “Analyzing” Starlike Polynomials

We want to explore the work of starlike univalent polynomial construction from a

different point of view and show how hard it can be. We will replace our force field

condition with a compact one involving p and its derivative. Specifically, we will

show that the “always exiting” property for p can be written as <[zp′(z)/p(z)] > 0

for z in D. The argument involves only elementary properties of complex numbers.

To this end, we assume p(z) = z(1− z/z1) . . .(1− z/zn−1) is starlike univalent. Let
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z = r(cos(t) + i sin(t)) be in D, then the “always exiting” vector condition can be

written as

t − π/2 < polar argument[
1

z − 0
+

n−1∑

k=1

1
z − zk

] < t + π/2.

But remember that the polar argument for a complex number behaves logarith-

mically: arg(w1w2) = arg(w1) + arg(w2). Thus we can subtract the t from each

inequality and absorb it into the central expression, distributed on each term:

−π/2 < arg[1/r +
n−1∑

k=1

cos(−t) + i sin(−t)
z − zk

] < π/2.

But the argument inequality remains the same if we multiply each term through

by r > 0 and replace the polar complex number with a conjugate:

−π/2 < arg[1 +
n−1∑

k=1

r
cos(t) + i sin(t)

z − zk
] < π/2.

The properties of complex conjugates allow us to pull the conjugates off of each

term and replace them by a the conjugate of a single expression:

−π/2 < arg[1 +
n−1∑

k=1

r
cos(t) + i sin(t)

z − zk
] < π/2.

Equivalently

−π/2 < arg[1 +
n−1∑

k=1

z

z − zk
] < π/2.

But this condition just says that the quantity inside the argument has positive

real part:

<[
z

z − 0
+

n−1∑

k=1

z

z − zk
] > 0.

Recalling Gauss’ derivation of the force field idea we can remove the conjugates,

since a number has positve real part if and only if its conjugate does:

<[
z

z − 0
+

n−1∑

k=1

z

z − zk
] > 0.
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As in Gauss’ equation we realize that this is the same as <[zp′(z)/p(z)] > 0 for

z in D. These steps can be reversed. This is what we are after, an “analytic”

equivalent condition for starlike univalence.

Before using this we note that the condition was introduced by the Finnish math-

ematician R. Nevanlinna in the 1920’s to describe starlike behavior for any power

series f(z) = z + a2z
2 + · · · in D. Our derivation of it for polynomials appears

to be novel. The exact relation for an arbitrary function f(z) = z + a2z
2 + · · ·

complex differentiable in D is: f is univalent and starlike in D if and only if

<[zf ′(z)/f(z)] > 0 in D. For details on this statement, see [7], section 12.2. For

example, h(z) = z/(1−z) is a linear fractional transformation which maps D univa-

lently onto {w : <(w) > −1/2}. It is then clearly starlike and univalent. An easy cal-

culation shows that zh′(z)/h(z) = 1/(1− z), which takes D onto {w : <(w) > 1/2}.
This confirms the starlike univalence of h using the condition.

Another direct connection that can be made between the test quantity

<[zf ′(z)/f(z)] and the geometry of an arbitrary function f is the relation

<[zf ′(z)/f(z)] = ∂/∂t[arg f(r cos(t) + ir sin(t))], which can be shown by elemen-

tary properties of complex differentiation and the complex logarithm. Specifically,

we first note that the complex logarithm can be defined as the inverse of the com-

plex exponential mentioned earlier. A little consideration shows that this yields

log(z) = ln |z| + i arg(z). For a complete justification of this definition, see [7],

section 4.3. As long as we are working “locally”, that is, in the neighborhood of

a fixed z ∈ D, the principal value or any appropriate adjustment can be used for

arg(z). By differentiating the relation exp(log(z)) = z with respect to z we obtain

d/dz(log(z)) = 1/z, as in the real case. Next, use the Euler relation for the polar

form of a complex number, z = r(cos(t) + i sin(t)) = reit. Our connection follows:

d/dt[arg f(reit)] = d/dt =[log(f(reit))]

= =[d/dt log(f(reit))]

= =[ireitf ′(reit)/f(reit)]

= <[zf ′(z)/f(z)]

where we have also used the chain rule. So our analytic condition <[zf ′(z)/f(z)] > 0

is related to the increasing of the polar argument of f(r cos(t)+ir sin(t)) as described

by Alexander in his definition of starlikeness. We also mentioned this in connection

with P1 in the Introduction.



A “FORCEFUL” CONSTRUCTION OF 1-1 COMPLEX POLYNOMIAL MAPPINGS 21

As an application we analyze the cusp at the critical point z = −1 for p1. If we

look at Figure 4 we see that this critical point is the equilibrium for the forces from

the origin and z = −2. If we replace the bit of C near this equilibrium with a vertical

line through it, the force field acts on the line near z = −1 much as it does on the

arc. But clearly the resultant forces on this line have zero horizontal component.

Thus the resultant vectors on the arc have argument nearly π/2 above the real axis

and nearly −π/2 below. Thus by our derivation <[zf ′(z)/f(z)] is nearly zero on

this arc. But by the connection just stated, the image of this arc then has small

argument change, a change nearing zero as we approach the equilibrium point. This

is consistent with the cusp.

8. More On Starlike Polynomials

An analyst easily warms up to the condition in the previous section. To use it

one usually writes

zp′(z)
p(z)

=
zp′(z)
p(z)

· p(z)
p(z)

=
zp′(z)p(z)
|p(z)|2

.

Thus testing the real part of the numerator N(z) = zp′(z)p(z) for positive real part

in D is all that is necessary. For our epicycloidal family z + zn/n we can calculate

<[N(r(cos(t) + i sin(t))] =
rn−1

n
[1 + cos(n − 1)t] + [1 + rn−1 cos(n − 1)t] > 0 for all

r and t. This is a demonstration by analysis that the family is starlike univalent.

The condition is often difficult to apply. For example, for the arbitrary cubic

p(z) = z + a2z
2 + a3z

3, even if we assume a2 and a3 are real, we have

N(r(cos(t) + i sin(t)) = r[1 + 3a2
3r

4 + (4a2 + 5a2a3r
2)r cos(t) + 4a3r

2 cos(2t)].

Thus checking in general for positivity amounts to choosing a2 and a3 so that

this trig expression is positive for all r and t! Some relief is available. The function

<[zf ′(z)/f(z)] for f(z) 6= 0 on D is harmonic ([7], Chapter 10). This property

is physically exemplified by a steady-state temperature distribution T (x, y) on D

induced by heat sources outside of D. One of the many properties of harmonic

functions is that positivity on C implies positivity throughout D. (The temperature

on the interior of a circular plate will not drop below its temperature on the rim.)

Thus we need only check for the positivity of <[N ] on C. This allows us to take

r = 1 in our computations.
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We can combine this test with the clever choice of point sources for the force

field. For example, suppose we wish to place a conjugate pair a ± bi to induce a

critical point at w = 1 but hope to preserve starlikeness. We may invoke the center

of gravity with respect to z = 1. This is the point α at which the force at z = 1 due

to the pair is equal to the force at z = 1 due to a double particle at α. If we set

α = 3 we can solve the force equation

1
1 − a + bi

+
1

1 − a − bi
=

2
1− 3

to get a + b2/(a− 1) = 3, or, equivalently, (a− 2)2 + b2 = 1. Thus any pair a± bi of

point sources on this circle will act at z = 1 like a double point source at α = 3. Not

every pair will give a starlike polynomial, however. We must choose and experiment.

If we let a ± bi = 2 ± i, we obtain p7(z) = z − (4/5)z2 + (1/5)z3. We then obtain

N(cos(t) + i sin(t)) = (8/5)(1− cos(t))2 > 0 for all t. Thus p7 is starlike univalent

in D. Often a computer algebra system is needed in more complicated examples

to test positivity. But it is not hard to believe that in general we have a difficult

analysis problem before us.

The authors have constructed a family of quartic starlike univalent polynomials

in the following manner. Begin with the epicycloidal z − z4/4, where the nontrivial

zeroes are distributed at equal angles around {z : |z| = 41/3}. Then reduce the

two angles between the three successive nontrivial zeroes, keeping them equal, while

maintaining the zeroes on {z : |z| = 41/3}. This increases the total force at z = 1

from these zeroes. Now, keeping the magnitude of the zeroes equal, move them far

enough away from the origin that the resulting polynomial still has the exiting force

field condition on D. We allow a critical point at z = 1. The analytic test condition

is used to determine how far back to pull the zeroes in order that the resulting the

polynomials are starlike. The terminal polynomial in this family is the Alexander

example s4(z) = z(1 − z/4)3 where the angle between any two nontrivial zeroes is

0. If we let a be our parameter, the family is given by

p(a, z) = z − a3 − 4
a2(2a− 3)

z2 +
a3 − 4

a3(2a − 3)
z3 − 1

a3
z4, for 41/3 < a < 4.

As we allow a to vary we get a catalogue of images of D under the resulting

polynomial mappings. Some of these are shown in Figure 12. When a = 2 we have

p8(z) = z − z2 + (1/2)z3 − (1/8)z4, with zeroes at z = 0, 1 ± i
√

3, and z = 2. The
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Fig. 12a. p(a, z) for a = 1.6
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Fig. 12b, 12c. p(a, z) for a = 1.65, 1.72.

nontrivial zeroes are placed equiangularly on {z : |z| = 2}. The critical point at

z = 1 created by the zero set { 0, 2 } is maintained.
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Fig. 13a. p9(z) = z − 1.085z2 + .61344z3 − .1662z4.

We conclude this section by modifying p8. Maintain the arguments of the nontriv-

ial zeroes but pull them closer to the origin. Specifically, replace z1 = 2 by z∗1 = 1.77,

and z2, z3 = 1 ± i
√

3 with z∗2, z
∗
3 = 1.92(cos(π/3))± i sin(π/3)). One might think

that this extinguishes univalence, but it doesn’t. The critical point is moved to

z = 1.01 . . . . Thus there is no cusp at z = 1, though it might appear so from Figure

13a. Moreover, near-tangential exiting of the flow field at two conjugate arcs on

C occurs. See Figure 13b for one arc in the upper half plane. This is due to the

confluence of streams from the origin and the remaining zeroes. A plot of the image

of D under the resulting p9(z) = z−1.085z2+ .61344z3− .1662z4 is shown in Figure

13a. Note the enlarged “eyedropper” shape near z = 1 in Figure 13c. The tangent

line in Figure 13c shows the image at a point where ∂/∂t(arg(f(r(cos(t) + i sin(t))

is small. This is the image of a point near z = cos(0.9) + i sin(0.9), a point on the

arc where the near-tangential exiting of the force field occurs. We have reached the

limits of starlikeness by this near-tangential exiting in the domain. It is reflected by

the argument of the image curve undergoing instantaneous almost-zero change.
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Fig. 13b, 13c. Force field for p9(z) and enlargement of image curve.

9. Conclusion

We have looked at the problem of finding one-to-one polynomial mappings of D

from several points of view. It can be seen as a problem in algebra, though we

didn’t dwell on this aspect. Others have, and found it rough going. In a 1951 paper

[?] in which the entire collection of cubics univalent on D is found algebraically the

author remarks: “For polynomials of higher degree than three the discussion of the

resultant is not an easy task because not only the resultant is of high degree but the

explicit calculation of the functions of Sturm surpasses the possibilities of a normal

man.” (The resultant and Sturm functions are algebraic expressions.) Marden’s

book surveys the larger algebraic question of finding roots and critical points of

polynomials. The geometry of complex mappings has played an important role in

our work. We examined many curves, images and preimages under polynomials

to help locate the domains of univalence. We needed to understand what these

mappings do at critical points and “in the large”. Complex and real analysis also

played a role in considering starlike polynomials.

We hope that our use of the “mechanical analogy” provides a platform from

which to explore these mappings. By studying the associated force field one can

not only explore univalence but can to some extent predict mapping behavior, as

we saw in the case of starlike polynomials. It is interesting to note that there
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are some univalent polynomials which don’t arise from our approach. Let p10(z) =

z+2
√

2/3z2+(1/3)z3. Then p10 can be shown univalent on D, but the corresponding

force field emanating from 0 does not cover D. As an exercise the reader may wish

to analyze the field and basins for p10 and see how the image of D under p10 arises.

Our polynomials examples had real coefficients. This was the result of choosing

nontrivial zeroes in conjugate pairs or on the real axis. But clearly the method

applies to any nontrivial zero set. An easy example occurs by choosing z1 = 1.8 and

z2 = 1.825(1 + i). The reader can show that this polynomial is univalent on D by

basin analysis.

The basins for the force fields provide a tool for decomposing the entire complex

plane into tractably mapped regions, as Hibbert showed. The graph of a real poly-

nomial can be understood by seeing where it is monotone. The study of the global

behavior of a complex polynomial can be initiated by looking at its behavior on

basins. But that is a much larger project. Our present investigation is ended.
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